Topological stability of kinetic k-centers

نویسندگان

چکیده

We study the k -center problem in a kinetic setting: given set of continuously moving points P plane, determine (moving) disks that cover at every time step, such are as small possible any point time. Whereas optimal solution over may exhibit discontinuous changes, many practical applications require to be stable : must move smoothly Existing results on this with bounded speed, but model allows positive only for < 3 . Hence, limited and offer little theoretical insight. Instead, we topological stability -centers. Topological was recently introduced simply requires change continuously, do so arbitrarily fast. prove upper lower bounds ratio between radii an unstable topologically solution—the ratio—considering various metrics optimization criteria. For = 2 provide tight bounds, > can obtain nontrivial bounds. Finally, algorithm compute polynomial constant

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the topological centers of module actions

In this paper, we  study the Arens regularity properties of module actions. We investigate some properties of topological centers of module actions ${Z}^ell_{B^{**}}(A^{**})$ and  ${Z}^ell_{A^{**}}(B^{**})$ with some conclusions in group algebras.

متن کامل

Topological centers of the n-th dual of module actions

We study the topological centers of $nth$ dual of Banach $mathcal{A}$-modules and we extend some propositions from Lau and "{U}lger into $n-th$ dual of Banach $mathcal{A}-modules$ where $ngeq 0$ is even number. Let   $mathcal{B}$   be a Banach  $mathcal{A}-bimodule$. By using some new conditions, we show that $ Z^ell_{mathcal{A}^{(n)}}(mathcal{B}^{(n)})=mathcal{B}^{(n)}$ and $ Z^ell_{mathcal{B}...

متن کامل

Topological Centers and Factorization of Certain Module Actions

Let $A$ be a Banach algebra and $X$ be a Banach $A$-bimodule with the left and right module actions $pi_ell: Atimes Xrightarrow X$ and $pi_r: Xtimes Arightarrow X$, respectively. In this paper, we  study  the topological centers of the left module action $pi_{ell_n}: Atimes X^{(n)}rightarrow X^{(n)}$ and the right module action $pi_{r_n}:X^{(n)}times Arightarrow X^{(n)}$,  which inherit from th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2021

ISSN: ['1879-2294', '0304-3975']

DOI: https://doi.org/10.1016/j.tcs.2021.03.026